Totsse '.;A

NSL-35 6

EQUILIBRIUM TEMPERATURES OF MASS TRANSFER
COOLED WALLS IN HIGH-SPEED FLOW OF AN
ABSORBING-EMITTING GAS

by

J. L. Novotny
- Y. Taitel
J. P. Hartnett

N66-15589

(ACCESSION NUMBER) (THRU)

2D /

{PAGES) E)

(NASA CR OR éMX OR A; NUMBER) (CATEGORY)

FACILITY FORM €02

GPO PRICE $

CFST! PRICE(S) §

Hard copy (HC) ﬁcﬂa—o
Microfiche (MF) qiv

1653 July 65




Equilibrium Temperatures of Mass Transfer

Cooled Walls in High-Speed Flow of an

Absorbing-BEmitting Gas

J. L. Novotny
\
} Y. Taitel
i : '

J. P. Hartnett
o3
o ABSTRACT | °

The Couette flow model was used to study radiation interaction
effects in high-speed flow with mass transfer coocling. The par-
ticular case studied in detail corresponds to the equilibrium or
recovery wall temperature condition wherein the convection to the
wall is balanced by the net radiation away from the wall. The
reccovery temperature and corresponding temperature profiles are

determined for a wide range of the radiation interaction parametea;;'

the mass transfer rate, and the optical thickness for representati#é;

values of the Eckert and Prandtl numbers. The results from the

optically thin and thick approximations are also compared to

those obtained from the more exact analysis.

The relatively simple approach of superposition (i.e., adding
the heat transfer for the pure radiation case toc that for the pure
convection case) is examined. It is shown that this procedure not
only predicts the equilibrium wall temperature with reasonable
accuracy but also predicts the total heat transfer under conditions

where the wall is at a temperature differing from the recovery

condition. ) - " B ()$A\+o( .




INTRODUCTION

The problem of protecting the surfaces of high-speed vehicles

from frictional heating has received considerable attention in the

- last decade. Mass transfer cooling as a means to reduce surface

heating has been studied by many investigators. A review of some
of the earllier analytical work on laminar boundary layers is given
in reference (1l). Heat transfer in media capable of emitting,
absorbing and scattering radiation has alsc received a great deal
of attention. Besldes formulating specific examples, references
(2), (3) and (4) present excellent reviews of previous work in

the field of radiation energy transport. To date, the interaction
of radliation with the other mocdes of heat transfer in mass transfer
cooling situations, or alternately, the influence of mass transfers
in problems dealing with radiation interaction has not been
examined in great detail. However, as demonstrated in references
(5) and (6), the coupling of the two processes can be of definite
importance in high-speed flight.

This report presents a study of the temperature distribution
under recovery conditions1 in high-speed laminar Couette flow of
an absorbing-emitting gas with surface mass transfer. The governing
conservation equations are simplified by the assumption that the
properties of the main stream and the coolant are identical and

constant. Not only is it assumed that the properties are

1The equilibrium wall temperature (recovery temperature) is defined
as the temperature of the wall when the convection to the wall is
balanced by the net radiation away from the wall. This definition
differs from the normal recovery condition without radiation
wherein the temperature gradient at the wall is zero.
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independent of temperature but also that the absorpﬁ}on coefficient
is independent of wavelength. The influence of mass transfer

rate and radiation interaction on the equilibrium wall temperature
isstudied for values of the optical thickness ranging from
optically thin to optically thick gas layers. The radiation
interaction parameter which governs the relative role of radiation
is varied from pure radiation to pure convection. Numerical
results are presented for black walls and for representative
values of the Eckert and Prandtl numbers. Since the Couette

flow model used here still retains many of the essential features
of the related boundary-layer problem, it 1s expected that the
present results will serve as a guide to predict radiation-

interaction effects in the more realistic situation.

Due to the complexity of problems involving the interaction

of radiation with conduction and convection, it would be advan-

—. JEER——— S -

tageous to have a simplified technique to predict surface heat

transfer. The method of superposition proposed by Einstein (7)

is a possible technique. This method assumes that the total

heat transfer at a surface can be obtained from the sum of the
pure radiation and pure conduction at the surface neglecting the
interaction of the radiation with the other modes of heat transfer.
The method has proven to be successful in predicting the total
heat transfer in an absorbing-emitting medium between infinite
parallel plates with black surfaces (2). Recaovery temperatures

obtained from the principle of superposition are compared to the
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more exact results presented in this report. In addition, the
total heat transfer results presented in reference (5) are com-

pared to values predicted by superposition.
THEORY

gGoverning Equations The Couette flow model with its boundary

layer counterpart is 1llustrated in Flgure 1. It is assumed that
the flow 1s steady and laminar with viscous dissipation. The walls
of the one-dimensional Couette model are black and the absorbing-
emitting medium is a non-scattering diffuse gas with an index of
refraction of one. It is further assumed that the physical pro-
perties of the main stream gas and the injected gas are identical
and constant; the absorption coefficlent is taken to be independent

of temperature, concentration and wavelength.

The energy transport processes are governed by the energy
2

conservation principle which for the present situation™ can be
expressed as
d°s _ RePr do Re“Pr E oRe v/r_ .1 d ,%r
5 = S "3, Re .2 °® o+ = — (—) (1)
dr T, Gr To(e -1) AN ax oTg

where qp is the radiative heat flux in the y-direction. Taking
into account the previous assumptions, the radiative heat flux

can be expressed as (2)

Zpale olEs(n) - Bylromn) + 8 M(0) B (retat - et () Ey(t-m)aty  (2)
o s (o] T

2The derivation of equation (1) is given in reference (52. The
parameters g and N are based on T, whereas in reference (5) they
are based on T,. Here, the Eckerf number 1s equal to u%/bpiTs.
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where aw is the dimensionless wall temperature at + = 0. Differ-

entlating this expression with respect v, one obtains

4 "o 4
L) = -2(0 B (1) + Ey(r-7) + [ ° o*(t)E (Ir-t])at - 20%(+)
ar OTB o}

Equations (1) and (3) coupled with a boundary condition at
each wall describes the energy transport process. The imposed
boundary conditions are 9 = 1.0 at v = 1, and g = 0 at r = O where

qQ is the sum of the radiative and convective heat fluxes. This

latter condition 1s given by

llN%g- = e: - 2E3(To) - 20f7° e"(t)Eg(t)dt (4)
w
The first term in equation (4) is the dimensionless convective
heat flux qc/bTﬁ to the wall and the remaining terms represent
the net radlative heat flux qr/bT: away from the wall. In light
of equation (4), the dimensionless temperature ew appearing in
equations (2), (3) and (4) is the equilibrium temperature cf the

wall.

It is convenlent to tranaform equations (1) and (3) into an
integral equation by integrating twice with respect to v from o

to ¢. Utilizing the conditions, 8 = 1 at r = T, and 8 = 8 at

+ = 0, this integration yields

8, + -};(l-ew) + %"ﬁ{ o) I%; Ey(r,) - Eyl+) +% (1 - )]

®»
it

O

1 Pr E 2R
+ {(1 - {;?Eu(To) - Ep(7,-7) + 3‘%;]} +'Zz;§g:I7§ [%; Ca

(3)




-6 -
.
- e2Re /o L1 ) +.2§E§ [ o(t)at - = fvo o(t)at]
To °o o o ©
: (5)
1 o T 4

vam {15500 - Byllr-tDde 2= [B5(r-t) - B5(6)]) o7(t)ae
Using the expression for gg) obtained from equation (5), the

w

boundary condition for the equilibrium wall temperature ew is

given by
4 1 Pr EN 2Re
8 =1 4 — 4N[1 4+ 6 _(RePr - 1)] + —="—[e“"®-2Re-1]
¥ 5 -2E,(.)] " (e€-1)%
.
- 29 2 NRePr 50vy 4 e*(t)EL(8) - o™ (t)EL(r -t)]at (6)
T 3 AV o

Equations (5) and (6) were solved numerically on an IBM 1620 II
digital computer using an iterative scheme. The numerical‘pro—
cedure was repeated until the successive approximations for 8
were within 0.0001. To obtain convergence for small values of N
it was necessary to augment the normal procedure by weighting
each new 1iteration close to the previous one. The exponential

integral functions En(T) were taken from (8).

Approximate Equations When the optical thickness 1is very

small (70 << 1), the expressions given by equations (3) and (4)

can be simplified by assuming that each gas element exchanges
radiation directly with the bounding walls and no attenuation
takes place in the intervening gas layers. Under the negligible
self-absorption assumption, equations (3) and (4) take the form (2)
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q
& o - 4ot(r) - 20} - 2 (7)
8
.
4N'%%)w =0} + (27,-1) - 2 J ° a*(t)at (8)

Using equations (7) and (8) and the boundary condition 8

It
[

at v = 1, equation (1) was solved numerically by an iterative

forward integration procedure. Due to the influence of the

integral in equation (8) it became increasingly more difficult

to obtain a solution as N was decreased.

Wwhen the optical thickness 1is very large (TO >> 1), eguations

(3) and (4) can again be simplified. Through the use of the dif-

a 4
fusion approximation for the radlative heat flux "EE = -,%‘gg_
oT
equation (1) takes the form s
11+ ﬁ.gf) doy _ RePr do _Pr E I AL (9)
ar N/ G T, ar Tg(ene_l)e
The boundary corditions now reduce to 8 =1 at r = o and
%% =0at v = 0. The latter boundary condition is Just the
w q
recovery condition wherein the total heat flux at the wall “!K =
oT

16, ds
- (4N + =2) =) 1s set equal to zero.
3 d

The solution of equation (9) was obtained numerically by
forward integration. In the absence of mass transfer, equation

(9) can be integrated exactly to yield a fourth order algebraic

equation for Bw'
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values of optical thickness and for selected values of N/TO.

To simplify the calculations, the thin and thick approximations
were used to calculate the results for T = 0.1 and 10.0,
respectively. On the basis of the comparisons given in Table 1,
it is expected that the approximate analyses will yleld accurate
estimates of the equilibrium wall temperature. The results for

T, = 1.0 were obtained from equations (5) and (6).

As the role of radiation increases for a fixed To? Figure 6
shows that mass transfer becomes increasingly less effective as
a means to reduce the equilibrium wall temperature. Inspection
of Figure 6 also indicates that except in the case of pure
radiatiocn, N/To = 0, the equilibrium wall temperature decreases
with an increase in mass transfer rate. The laminar boundary
layer without radiation shows the same trend for Prandtl numbers
less than one. It was polnted out in (5) that the mass transfer
rate has little influence on the radiative heat flux except in
the case of 7 = 10.0. Thus in the 7 = 0.1 and 1.0 cases where
the radiation and the convection are not highly coupled, the
reduction of the equilibrium wall temperature with an incredse
in blowing is due mainly to the decrease 1n convection. 1In
general the decrease in the equilibrium wall temperature with an
increase in blowing rate is most pronounced for 7 = 0.1. Inspec-
tion of Figure 2, 3 and 4 reveals that at fixed values cof N/-rO

qc 4N ds
the dimensionless convective heat transfer —p = - — )
oT

T
od:—w
o

is
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largest for an optical thickness of 0.1. Since mass transfer is
very effective in reducing the convective heat transfer, its
influence on the equilibrium wall temperature for this case is

not surprising.

For T = 10.0, the radiation and the convection are highly
coupled and the energy transport is a diffusive process. There-
fore the variation of 8 with blowing rate is quite similar to
that for pure convection. Inspection of Figure 4 also reveals
that the temperature profiles for different values of N/t  are

guite similar in shape to the pure convection case.

Superposition The method of superposition is a simplified

technique for the calculation of the total heat transfer to
surfaces in the presence of radiation interaction. This procedure
assumes that the total heat transfer can be calculated from the
sum of the radiation and conduction at a surface ignoring the
effects of radiation interaction. Reasonable results have been
obtained in the past for the Couette flow model without dissipa-
tion or mass transfer (2). Here the effects of mass transfer

and dissipation are included. The equations which are necessary

for the calculations are given in the Appenaix.

The equilibrium wall temperatures obtained from superposition
are compared in Table 1 to the results of the more exact analysis
for one mass transfer rate Re = 2.0. Close inspection of Table 1

reveals that the approximate method gives an excellent prediction
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of the equilibrium wall temperature for the cases examined. The
total heat transfer results given in (5) for wall temperatures
differing from the equilibrium wall temperature are compared in
Table 2 to the results predicted from superposition. In general
the agreement is quite satisfactory considering the simplicity
of the approximate analysis. Clearly the aéreement is excellent
for the smallest value of To where the radiative and convective
transport processes are not highly coupled. This should be
expected since in the limit as To goes to zero the superposition
procedure becomes exact. In the other limit as T, goes to
infinity, the approximate analysis does not correspond tc the
exact solution. Since the approximate analysis 1is also q}act

at the limiting cases of pure radiation and pure convection, the

largest discrepancies occur for intermediate values of N/%o.

The results seem to indicate that the method of superpositilan

is a meaningful tool for the estimation of total heat transfer

at surfaces in the presence of radiation 1interaction. However,
the method has only been examined under a set of restrictive
assumptions. It has been shown in (2), for example, that sub-
stantial errors arise through the use of the method to predict

the total heat transfer for combined conduction and radiation
between infinite parallel plates with grey surfaces. Thus, the
method may not be applicable to cases where the surfaces have

low emissivities. It must be mentioned that the superposition

method 1is only applicable for the prediction of the total heat
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transfer. The separate radiative and conductive heat fluxes
obtalned from approximate analysis differ substantially from the
more exact components except in the limiting cases of pure

radiation and pure convection.

CONCLUDING REMARKS

The results of the analysis of high-speed Couette flow with
radiation interaction suggest that the wall temperature under re-
covery conditions is only moderately sensitive to the mass transfer
rate and the optiecal thickness of the gas layer. On the other hand,
the dimensionless equilibrium wall temperature i1s strongly dependent
on the relative magnitude of the radiation participation. As one
would expect, mass transfer becomes more effective as gpe role of

convectlon increases.

The method of superposition has been examined and found t§
give results within engineering accuracy for the equilibrium wall
temperature and the total heat transfer under conditions differing
from the recovery condition. The success observed here lends
further support to this simplified approach as a tool for the
calculation of the total heat transfer in radiation interaction
situations. As pointed out 1in the text, the method needs further

examination in situations involving walls of low emissivities.
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NOMENCLATURE
a = absorption coefficient

cp = gpecific heat at constant pressure

e = black-body emissive power, ch

E = Eckert number, u2/b T

8/ "pi-s 1

E. = exponential integral, En(r) = [ tn'ee-T/% dt

n o
k = thermal conductivity

N = dimensionless radiation interaction parameter, ka/ﬂcTz

Pr = Prandtl number, ucpi/k

heat flux rate

Neo]
]

Re

ﬂ

blowing Reynolds number or dimensionless mass transfer rate,
oV5/u
t = dummy variable of integration

T = absolute temperature

u = velocity component 1in x-direction
v = velocity compcnent in y-direction
x = distance along surface .

y = distance perpendicular to surface

8 = plate spacing

£ +]
it

dimensionless temperature T/Ts
u = dynamic viscosity

? = density

0 = Stefan-Boltzmann constant
v = optical distance, ay
T = optical distance, as
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Subscripts

¢ = convection

1 = injected gas

r = radiation

8 = wall at y = 3

w = wall at y =0

( ), = refers to the case of no radiation, N = «
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( APPENDIX

Governing Equations for Superposition The expression for

the heat transfer at y = 0 for Couette flow with surface mass
transfer and dissipation in the absence of radiation 1s given by

| 2Re
q [(s,-1)-F(e“"-1)]Pr [
c_ _ 4N Re oF + W

0‘1‘78‘I To (eRe Pr-—l) i

(10)
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where
- E Pr
2(2-Pr)(e

Equation (10) was obtained from results given in (9). Although

equation (10) includes the parameter'g—, this by no means implies

o
that the convectlive heat transfer depends on radiation interaction;
the factor-?— is independent of the absorption coefficient. The

o

dimensionless temperature ew can refer to either the wall tempera-
ture under recovery conditions or the wall temperature under non-

recovery conditions depending on the situation.

The radiative heat transfer at the wall y = O for the case of
infinite parallel black plates in the absence of conduction.and

convection can be expressed as (2)

q T
r 4 o L
i (s, - 1) ! 2 EB(TO) + 2 Of ¢(t) E,(t)at, (11)
S ! '
T (t)-T"
where a(t) =5 - The expression appearing in the brackets
T,.~-T
B w

in equation (11) is tabulated in (2) as a function of ™"

Equations (10) and (11) represent the separate heat fluxes
for pure convection and pure radiation for the Couette flow model
studied in this report. According to the method of superposition
the total heat transfer at the surface in the presence of radiation

interaction is given by

a a, + g
—r = "‘—II—C r (12)
o T

S 8
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Equations (10), (11) and (12) were used to calcula;e the
approximate equilibrium wall temperatures appearing in Table 1
and the approximate total heat transfer results given in Table 2.
The equilibrium wall temperatures were obtained by setting q = O
in equation (12) and solving the resulting algebraic equation

for ew.
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Table 1

Equilibrium wall Temperature Results for Re = 2.0, E = 27.4 and
Pr = 0.7 where (Gw)°° = 9.12. Numbers in Parenthesis Refer to the
Thin (ro = 0.1) and Thick (7 = 10.0) Analyses. ew(approx) refers

to Superposition

S N/%O o, Qw(approx)
0.1 0 1.00 (1.00) 1.00
1 2.09 1.98
10 3.35 3.36 3.29
100 5.27 5.28 5.27
1,000 7.51 7.51 7.52
10,000 8.81 8.82
1.0 o] 1.00 1.00
1 2.41 2.21
10 3.82 3.67
100 5.80 5.77
1,000 7.89 7.9%
10.0 0 1.00 1.00 1.00
0.01 1.28 1.23
0.10 2.00 1.90
1.00 3,37 3.3l %.17
10.0 5.28 5.28 5.10
100 7.44 7.43 7.37
1,000 8.78 8.77 8.77




Compariscon of the Total Heat Transfer Results Calculated by Super-
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- Table 2

position to the Non-Recovery Results of (5) for Re = 2.0 and Pr
(a). 9(7=0) = 4.0 and E = 27.4 where (q/sz)m = -9.38 N/7_
™ N/7, a/oT}, (5) qa(approx)/q
0.1 0 23 1.00
0.64 22 0.99
6.4 168 1.03
64 -381 0.96
640 -5790 0.99
6400 -59800 1.00
1.0 0 141 1.00
0.64 138 0.98
6.40 68.6 1.18
64.0 -507 0.91
640 -5910 0.99
10.0 0 27.6 1.00
0.64 21.5 1.01
6.40 -46.1 0.70
64.0 -607 0.94

(b). e(r=0) = 0.25 and E = 6.86 where (q/bTu) = -5.10 N/+
S O

4
.08 N/'rO q/st,(5) a(approx)/q
0.1 0 -0.914 1.00
0.00156 -0.941 0.98
0.0156 -1.05 0.95
0.156 -1.81 0.95
1.56 -8.99 ° 0.98
1.0 0 -0.551 1.00
0.00156 -0.582 0.97
0.0156 -0.719 0.88
0.156 -1.61 0.84
1.56 -8.93 0.95
10.0 0 -0.109 1.00
0.00156 -0.130 0.90
0.0156 -0.220 0.85
0.156 -0.992 0.91

0.7.
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